CSI researchers regularly publish research publications in top tier journals. Publications from our researchers are regularly updated, so watch this space for new publications.
2024:
Bao, D., Huang, L., Gao, Y., Davey, K., Zheng, Y., Qiao, S.-Z., 2024. Dynamic Creation of a Local Acid-like Environment for Hydrogen Evolution Reaction in Natural Seawater. J. Am. Chem. Soc. https://doi.org/10.1021/jacs.4c13036
Jiang, L., Bai, X., Zhi, X., Davey, K., Jiao, Y., 2024. Advancing electrochemical N 2 reduction: interfacial electrolyte effects and operando computational approaches. EES Catalysis. https://doi.org/10.1039/D4EY00197D
Zhang, S., Johannessen, B., Xia, B., Gao, X., Davey, K., Ran, J., Qiao, S.-Z., 2024. Selective Oxidation of Polyesters via PdCu–TiO2 Photocatalysts in Flow. J. Am. Chem. Soc. https://doi.org/10.1021/jacs.4c11973
Gao, X., Wang, P., Sun, X., Jaroniec, M., Zheng, Y., Qiao, S.-Z., 2024. Membrane-Free Water Electrolysis for Hydrogen Generation with Low Cost. Angewandte Chemie, e202417987. https://doi.org/10.1002/ange.202417987
Guo, M., Talebian-Kiakalaieh, A., Hashem, E.M., Xia, B., Ran, J., Qiao, S.-Z., 2024. Magnetic Mn-Incorporated Cs3Cu2Br5 Nanocrystals for Spin-Polarized Enhanced Photocatalytic Biomass Conversion Coupled with H2O2 Evolution. Advanced Functional Materials 34, 2406356. https://doi.org/10.1002/adfm.202406356
Xu, J., Yang, Y., Jin, H., Zheng, Y., Qiao, S.-Z., 2024. Bridging gaps between lab- and fab-oriented anode design for proton exchange membrane water electrolyzers. Chem. https://doi.org/10.1016/j.chempr.2024.09.004
Zhang, S.-J., Hao, J., Wu, H., Kao, C.-C., Chen, Q., Ye, C., Qiao, S.-Z., 2024. Toward High-Energy-Density Aqueous Zinc–Iodine Batteries: Multielectron Pathways. ACS Nano 18, 28557–28574. https://doi.org/10.1021/acsnano.4c10901
Fang, M., Miao, X., Huang, Z., Wang, M., Feng, X., Wang, Z., Zhu, Y., Dai, L., Jiang, L., 2024. Anionic Ionomer: Released Surface-Immobilized Cations and an Established Hydrophobic Microenvironment for Efficient and Durable CO2-to-Ethylene Electrosynthesis at High Current over One Month. J. Am. Chem. Soc. 146, 27060–27069. https://doi.org/10.1021/jacs.4c09168
Li, Y., Liu, Y., Peng, X., Zhao, Z., Li, Z., Yang, B., Zhang, Q., Lei, L., Dai, L., Hou, Y., 2024. Accelerated Proton-Coupled Electron Transfer via Engineering Palladium Sub-Nanoclusters for Scalable Electrosynthesis of Hydrogen Peroxide. Angewandte Chemie, e202413159. https://doi.org/10.1002/ange.202413159
Abdibastami, A., Gloag, L., Prada, J.P., Duong, H.T.K., Shanehsazzadeh, S., Sulway, S.A., Cheong, S., Hackbarth, H., Bedford, N.M., Jameson, G.N.L., Bongers, A., Gooding, J.J., Tilley, R.D., 2024. How Size and Composition of Cobalt Doped Iron Oxide Nanoparticle Tracers Enhance Magnetic Particle Imaging Performance. Chem. Mater. 36, 8773–8781. https://doi.org/10.1021/acs.chemmater.4c01484
Zhang, D., Tsounis, C., Peng, L., Yin, H., Hussain, F., Carnell, M., Macmillan, A., Chu, D., Amal, R., Han, Z., 2024. Nitrogen-doped vertical graphene for highly efficient hydrogen peroxide electrosynthesis in acidic environment. Chemical Engineering Journal 496, 154221. https://doi.org/10.1016/j.cej.2024.154221
Vu, P.N.H., Radlinski, A.P., Blach, T., Schweins, R., Lemmel, H., Daniels, J., Regenauer-Lieb, K., 2024. Revealing nanoscale sorption mechanisms of gases in a highly porous silica aerogel. J Appl Cryst 57. https://doi.org/10.1107/S1600576724006794
Zhu, M., Yu, L., Sha, S., Ge, R., Cheng, C., Dai, L., Li, S., Liu, B., Qu, Z., Li, W., 2024. Highly efficient nanosized MoS2/MoP heterocatalyst for enhancing hydrogen evolution reaction over a wide pH range. Sustainable Materials and Technologies 41, e01090. https://doi.org/10.1016/j.susmat.2024.e01090
Li, H., Li, X., Wang, P., Zhang, Z., Davey, K., Shi, J.Q., Qiao, S.-Z., 2024. Machine Learning Big Data Set Analysis Reveals C–C Electro-Coupling Mechanism. J. Am. Chem. Soc. 146, 22850–22858. https://doi.org/10.1021/jacs.4c09079
Guo, J., Haghshenas, Y., Jiao, Yiran, Kumar, P., Yakobson, B.I., Roy, A., Jiao, Yan, Regenauer-Lieb, K., Nguyen, D., Xia, Z., 2024. Rational Design of Earth-Abundant Catalysts toward Sustainability. Advanced Materials, 2407102. https://doi.org/10.1002/adma.202407102
Ramadhany, P., Luong, Q., Zhang, Z., Leverett, J., Samorì, P., Corrie, S., Lovell, E., Canbulat, I., Daiyan, R., 2024. State of Play of Critical Mineral-Based Catalysts for Electrochemical E-Refinery to Synthetic Fuels. Advanced Materials, 2405029. https://doi.org/10.1002/adma.202405029
Zhai, Q., Huang, H., Lawson, T., Xia, Z., Giusto, P., Antonietti, M., Jaroniec, M., Chhowalla, M., Baek, J.-B., Liu, Y., Qiao, S., Dai, L., 2024. Recent Advances on Carbon-Based Metal-Free Electrocatalysts for Energy and Chemical Conversions. Advanced Materials, 2405664. https://doi.org/10.1002/adma.202405664
Wang, M., Chen, J., Zhang, S., Sun, Y., Kong, W., Geng, L., Li, Y., Dai, L., Li, Z., Wu, M., 2024. Synergistic Interactions Between Co Nanoparticles and Unsaturated Co-N2 Sites for Efficient Electrocatalysis. Advanced Functional Materials, 2410373. https://doi.org/10.1002/adfm.202410373
Lin, Q., Kundu, D., Skyllas-Kazacos, M., Lu, J., Zhao, D., Amine, K., Dai, L., Wang, D.-W., 2024. Perspective on Lewis Acid-Base Interactions in Emerging Batteries. Advanced Materials, 2406151. https://doi.org/10.1002/adma.202406151
Liu, B., Zhu, Y., Sha, S., Ge, R., Cheng, C., Yin, J., Huang, Z., Dai, L., Li, S., Li, W., 2024. Strong Interaction between Molybdenum Compounds and Mesoporous CMK-5 Supports Boosts Hydrogen Evolution Reaction. Advanced Functional Materials, 2408613. https://doi.org/10.1002/adfm.202408613
Yang, Y., Yuwono, J.A., Whittaker, T., Ibáñez, M.M., Wang, B., Kim, C., Borisevich, A.Y., Chua, S., Prada, J.P., Wang, X., Autran, P.-O., Unocic, R.R., Dai, L., Holewinski, A., Bedford, N.M., 2024. Double Hydroxide Nanocatalysts for Urea Electrooxidation Engineered toward Environmentally Benign Products. Advanced Materials, 2403187. https://doi.org/10.1002/adma.202403187
Zhang, M., Ma, Z., Zhou, S., Han, C., Kundi, V., Kumar, P.V., Thomsen, L., Johannessen, B., Peng, L., Shan, Y., Tsounis, C., Yang, Y., Pan, J., Amal, R., 2024. Surface Engineering on Ag-Decorated Co3O4 Electrocatalysts for Boosting Nitrate Reduction to Ammonia. ACS Catal. 11231–11242. https://doi.org/10.1021/acscatal.4c01510
Baharfar, M., Hillier, A.C., Mao, G., 2024. Charge-Transfer Complexes: Fundamentals and Advances in Catalysis, Sensing, and Optoelectronic Applications. Advanced Materials, 2406083. https://doi.org/10.1002/adma.202406083
Huang, L., Bao, D., Jiang, Y., Zheng, Y., Qiao, S.-Z., 2024. Electrocatalytic Acetylene Hydrogenation in Concentrated Seawater at Industrial Current Densities. Angewandte Chemie International Edition, e202405943. https://doi.org/10.1002/anie.202405943
Mariandry, K., Cheong, S., Gloag, L., Ramadhan, Z.R., Somerville, S.V., Benedetti, T.M., Gooding, J.J., Tilley, R.D., 2024. Understanding the Role of Small Platinum Island Size on Crystalline Nickel Nanoparticles in Enhancing the Hydrogen Evolution Reaction. J. Phys. Chem. C 128, 9595–9601. https://doi.org/10.1021/acs.jpcc.4c03296
Guo, M., Talebian-Kiakalaieh, A., Hashem, E.M., Xia, B., Ran, J., Qiao, S.-Z., 2024. Magnetic Mn-Incorporated Cs3Cu2Br5 Nanocrystals for Spin-Polarized Enhanced Photocatalytic Biomass Conversion Coupled with H2O2 Evolution. Advanced Functional Materials, 2406356. https://doi.org/10.1002/adfm.202406356
Gunawan, D., Zhang, J., Li, Q., Toe, C.Y., Scott, J., Antonietti, M., Guo, J., Amal, R., 2024. Materials Advances in Photocatalytic Solar Hydrogen Production: Integrating Systems and Economics for a Sustainable Future. Advanced Materials, 2404618. https://doi.org/10.1002/adma.202404618
Jia, C., Sun, Q., Liu, R., Mao, G., Maschmeyer, T., Gooding, J.J., Zhang, T., Dai, L., Zhao, C., 2024. Challenges and Opportunities for Single-Atom Electrocatalysts: From Lab-Scale Research to Potential Industry-Level Applications. Advanced Materials, 2404659. https://doi.org/10.1002/adma.202404659
Mao, X., Bai, X., Wu, G., Qin, Q., O’Mullane, A.P., Jiao, Y., Du, A., 2024. Electrochemical Reduction of N2 to Ammonia Promoted by Hydrated Cation Ions: Mechanistic Insights from a Combined Computational and Experimental Study. J. Am. Chem. Soc. 146, 18743–18752. https://doi.org/10.1021/jacs.4c06629
Zhao, L., Yan, R., Mao, B., Paul, R., Duan, W., Dai, L., Hu, C., 2024. Advanced Nanocarbons Toward two-Electron Oxygen Electrode Reactions for H2O2 Production and Integrated Energy Conversion. Small, 2403029. https://doi.org/10.1002/smll.202403029
Zhang, S.-J., Hao, J., Wu, H., Chen, Q., Ye, C., Qiao, S.-Z., 2024. Protein Interfacial Gelation toward Shuttle-Free and Dendrite-Free Zn–Iodine Batteries. Advanced Materials, 2404011. https://doi.org/10.1002/adma.202404011
Yeoh, G.H., De Cachinho Cordeiro, I.M., Wang, W., Wang, C., Yuen, A.C.Y., Chen, T.B.Y., Vargas, J.B., Mao, G., Garbe, U., Chua, H.T., 2024. Carbon-based Flame Retardants for Polymers: A Bottom-up Review. Advanced Materials, 2403835. https://doi.org/10.1002/adma.202403835
Jiang, Y., Li, H., Chen, C., Zheng, Y., Qiao, S.-Z., 2024. Dynamic Cu0/Cu+ Interface Promotes Acidic CO2 Electroreduction. ACS Catal. 8310–8316. https://doi.org/10.1021/acscatal.4c01516
Liu, D., Shi, L., Dai, Q., Lin, X., Mehmood, R., Gu, Z., Dai, L., 2024. Functionalization of carbon nanotubes for multifunctional applications. Trends in Chemistry 6, 186–210. https://doi.org/10.1016/j.trechm.2024.02.002
Yang, Y., Bedford, N.M., 2024. Two-Dimensional Layered Hydroxide Materials for Nucleophile Oxidation. ChemElectroChem, e202400101. https://doi.org/10.1002/celc.202400101
Dai, Q., Dai, L., 2024. Metal-free catalysts for hydrogenation. Nat. Chem. 16, 845–846. https://doi.org/10.1038/s41557-024-01538-5
Li, Y., Verma, V., Su, H., Zhang, X., Zhou, S., Lawson, T., Li, J., Amal, R., Hou, Y., Dai, L., 2024. Rationally Designed Carbon-Based Catalysts for Electrochemical C-N Coupling. Advanced Energy Materials, 2401341. https://doi.org/10.1002/aenm.202401341
Lawson, T., Dai, L., 2024. Bulk van der Waals materials by low-temperature moulding. Nat. Mater. 23, 581–582. https://doi.org/10.1038/s41563-024-01872-6